MATH 2050C Lecture on 31412020

Last time oooo we provedsome limit theorems l_{dm} (xn t y_n) = l_{dm} (xn) t l_{dm} (yn) : l_{dm} (yn) = $\frac{l_{\text{dm}}(y_n)}{l_{\text{dm}}(y_n)}$ \neq 0 $lim (x_n y_n) = lim(x_n)$ lim (y_n) i $x_n \in y_n$ $\forall n \Rightarrow$ lim $(x_n) \leq lim(y_n)$ \leq Note: We need to assume lim (x_n) , lim (y_n) exist! \underline{Q} : How to prove that limit exists? Theorem: (Squeeze Theorem) Let (x_n) . (y_n) , (z_n) be sequences of real numbers, s.t. $\lceil \circ r \rceil$ $\forall n \geq k$ for some k \rfloor Xu Yu Zu 1 Xn \leq Yn \leq Zn \forall n \in N w (2) $\lim (x_n) = \infty = \lim (\infty)$. Then. (y_n) is convergent and $\lim_{n \to \infty} (y_n) = \mathbf{W}$. Remark: We do NOT need to assume lim (Yn) exists, this follows as a Conclusion of (1) and (2) . Proof: Let $\epsilon > 0$. Since $(x_n) \rightarrow w$, $\exists K_i = K_i(\xi) > 0$ st. $|x_n - w| < \xi$ $\forall n \geq K_i$ Since $(2n) \to w$, \exists Ka = Ka(E) > 0 st. $|\vec{z}_n - w| < \epsilon$ $\forall n \geq k_1$ Then, \forall n \geq $K := max[K_1, K_2]$, by (1) $\epsilon \leq x_n - w \leq y_n - w \leq \epsilon_n - w \leq \epsilon$ $T = \sqrt{V_{\text{Mech}}^2}$ $\forall n \geqslant K_1$ $\forall n \in \mathbb{N}$ $\forall n \geqslant K_2$ $ie.$ $|y_{n} - w| < \epsilon$ $\forall n \ge K.$ o Example: $\lim_{n \to \infty} \left(\frac{\sin n}{n} \right) = 0$ since $-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$ \Rightarrow $\left(\frac{\sin n}{n} \right) \to 0$ $\frac{1}{2}$

O 0

Thm: (Ratio test) Let (xn) be a sequence in IR s.t. (1) $X_n > 0$ $\forall n \in \mathbb{N}$ (2) $\ln \left(\frac{x_{n+1}}{x_n} \right) = \frac{1}{2} < 1$ Then, $\lim_{n \to \infty} (x_n) = 0$. Example: Let $(x_n) = \left(\frac{n}{2^n}\right)$. Observe $\left(\frac{\chi_{n+1}}{\chi_n}\right) = \left(\frac{n+1}{n} \right) = \left(\frac{n+1}{n} \cdot \frac{1}{2}\right) \longrightarrow \frac{1}{2} < 1$ Ratio test applies \Rightarrow lim $(x_n) = 0$. Remark: The thm. is false if $L = 1$. Consider e.g. $(x_n) = (n)$ $\left(\frac{\chi_{n+1}}{\chi_n}\right) = \left(\frac{n+1}{n}\right) \longrightarrow 1$ but (χ_n) divergent $(:unkod)$ $\overline{\text{Proof}}$: $\fbox{Idea: Compare (x_n) with a geometric seq. (b^n.c.) where G \in \mathbb{R}$ fixed and $o < b < 1$. $\int_{a}^{b} s^{x} dx$ Since $L < 1$, we can choose some $r \in R$ S.t. $L < r < 1$

Talce $\xi = r - L > 0$, since $\lim_{n \to \infty} \left(\frac{x_{n+1}}{x_n} \right) = L$,
 $\exists k = k(\xi) \in \mathbb{N}$ s.t. $\forall n \ge k$,
 $\frac{x_{n+1}}{x_n} \approx L$ for n large
 $\Rightarrow x_{n+1} \approx L \times n$ for n large
 $\Rightarrow x_{n+2} \ge L \times n$ for n large
 $\Rightarrow x_{n+3} \approx L^2 x_n$ we st $L < r < 1$ $\left|\frac{X_{n+1}}{X_n}-L\right|<\epsilon=\tau-L$ $0 < \frac{X_{n+1}}{X_n} < L + (r-L) = r$ $\forall n \ge K$. ゠ Therefore, Xn+1 < r xn Vn 2 K. More explicitly, $(x_n): x_1 \times_2 \cdots \times_{k-1} x_k \times_{k+1} x_{k+2} \cdots x_n \cdots$ $(r^{n-k}x_k) \approx X_1 \quad X_2 \quad \cdots \quad X_{k-1} \quad X_k \quad r^{n-k}x_k \quad \cdots \quad r^{n-k}x_k \quad \cdots$

So, $0 < x_n < r^{-k}x_k$ and $\lim_{k \to \infty} (r^{n-k}x_k) = 0$ since $0 < r < 1$ = $\lim_{k \to \infty} \lim_{k \to \infty}$

GOAL: When does (Xn) converge / diverge?

Recall: (x_n) convergent \Rightarrow (x_n) bold. equivalently, (Xn) unbdd => (Xn) divergent. However, (xn) bdd # (xn) convergent $[E_3, (x_n) = ((-1)^n)]$ $Q:$ Under what conditions does a bold seq. (Xn) converge? Monotone Convergence Thm: (Xn) bdd & "monotone" => (Xn) convergent.